Tag Archives: climate change

Poleward Bound: Adapting to Climate-Driven Species Redistribution

J. Melbourne-Thomas, A. Audzijonyte, M. J. Brasier, K. Cresswell, H. E. Fogarty, M. Haward, A. J. Hobday, H. L. Hunt, S. C. Ling, P. C. McCormack, T. Mustonen, K. Mustonen, J. Nye, M. Oellermann, R. Trebilco, I. van Putten, C. Villanueva, R. A. Watson, G. T. Pecl, (2021). Reviews in Fish Biology and Fisheries,

Climate change, range shifts, species redistribution, global, future seas,

https://doi.org/10.1007/s11160-021-09641-3, http://www.ecomarres.com/downloads/Poleward.pdf

One of the most pronounced effects of climate change on the world’s oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021–2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change.We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures—a ‘business as usual’ future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems.

Advancing Global Ecological Modeling Capabilities to Simulate Future Trajectories of Change in Marine Ecosystem

M. Coll, J. Steenbeek, M. G. Pennion, J. Buszowski, K. Kashner, H. K. Lotze, Y. Rousseau, D. P. Tittensor, C. Walters, R. Watson, V. Christensen, (2020). Frontiers in Marine Science 7, 567877.

marine ecosystems, climate change, fishing, future trajectories, projections,

10.3389/fmars.2020.567877, http://www.ecomarres.com/downloads/globalocean2.pdf

Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean’s biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950–2005) and future (2006–2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.

Energy Flow through Marine Ecosystems: Confronting Transfer Efficiency

T. D. Eddy, J. Bernhardt, J. Blanchard, W. W. L. Cheung, M. Colléter, H. D. Pontavice, E. A. Fulton, D. Gascuel, K. Kearney, P. C.M., T. Roy, R. R. Rykaczewski, R. Selden, C. A. Stock, C. C. C. Wabnitz, R. A. Watson, (2020). Trends in Ecology and Evolution,

trophic ecology, food web, trophic efficiency, energy transfer, climate change, fishing impacts

https://doi.org/10.1016/j.tree.2020.09.006, http://www.ecomarres.com/downloads/Transfer.pdf

Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. We review processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macroscale variations suggest that ecosystemscale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.

Defining and Observing Stages of Climate-Mediated Range Shifts in Marine Systems

A. Bates, G. Pecl, S. Frusher, A. J. Hobday, T. Wernberg, D. A. Smale, J. M. Sunday, R. K. Colewell, N. Dulvy, G. J. Edgar, M. Feng, E. A. Fulton, N. Hill, N. Holbrook, B. T. Radford, D. Slawinski, P. A. Thompson, R. A. Watson, (2014). Global Environmental Change 26, 27-38.   Continue reading